References

[1] M. Ageron et al. ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1):11{38, 2011.

[2] B. T. Cleveland et al. Measurmet of the solar electronneutrino Flux with the homestake chlorine detector. The Astrophysical Journal, 496(1):505-526, 1998.

[3] ANTARES Collaboration, S. Adrian-Martinez et al. The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08):T08002, 2012.

[4] ANTARES Collaboration, P. Amram et al. Sedimentation and Fouling of Optical Surfaces at the ANTARES Site. Astroparticle Physics, 19(2):253-267, 2003.

[5] ANTARES Collaboration, J.A. Aguilar et al. AMADEUS | The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 626-627:128-143, 2011.

[6] ANTARES Collaboration, J.A. Aguilar et al. First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope. Astroparticle Physics, 26(4-5):314-324, 2006.

[7] ANTARES Collaboration, P. Amram et al. The ANTARES Optical Module. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 484(1-3):369-383, 2002.

[8] ANTARES Collaboration, J.A. Aguilar et al. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2):132-141, 2005.

[9] J.A. Aguilar et al., ANTARES Collaboration. The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1):107- 116, 2007.

[10] ANTARES Collaboration, J.A. Aguilar et al. Transmission of light in deep sea water at the site of the ANTARES neutrino telescope. Astroparticle Physics, 23(1):131-155, 2005.

[11] ANTARES Collaboration, J.A. Aguilar et al. Transmission of light in deep sea water at the site of the ANTARES neutrino telescope. Astroparticle Physics, 26(1):131-155, 2005.

[12] ANTARES Collaboration, S. Adrian-Martinez et al. Measurement of the group velocity of light in sea water at the ANTARES site. Astroparticle Physics, 35(9):552-557, 2012.

[13] H. Yepes-Ramírez for the ANTARES collaboration. Water absorption length measurement with the ANTARES optical beacon system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 626-627, Supplement:S118-S119, 2011.

[14] ANTARES Collaboration, M. Ageron et al. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 581(3):695-708, 2007.

[15] H. Yepes-Ramírez. Characterization of the optical properties at the ANTARES site using the Optical Beacon system. Influence on the detector performance. PhD thesis, Universidad de Valencia, 2014.

[16] ANTARES Collaboration, J.A. Aguilar et al. Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 34(7):539-549, 2011.

[17] Juan Pablo Gomez Gonzales. Time calibration and search for cosmic sources of high energy neutrinos with the ANTARES neutrino telescope. PhD thesis, Universidad de Valencia, 2013.

[18] ANTARES Collaboration, S. Adrian-Martinez et al. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astroparticle Physics, 78:43-51, 2016.

[19] Agustn Sanchez Losa. Search for high energy cosmic muon neutrinos from variable gamma-ray sources and time calibration of the optical modules of the ANTARES telescope. PhD thesis, Universidad de Valencia, 2015.

[20] J. H. Oort. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the astronomical institutes of the Netherlands, 6(238):249, 1932.

[21] V. C. Rubin, W.K. Ford Jr. Rotation of the Andromeda Nepula from a spectroscopic survey of emission regions. The Astrophysical Journal, 159:379-403, 1970.

[22] M. Milgrom. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems. Annals of Physics, 229(2):384{415, February 1994.

[23] R.W. Wilson. The cosmic microwave background radiation. Nobel lecture, 1978.

[24] R.A. Alpher, R.C. Herman. On the Relative Abundance of the Elements. Physical Review, 74(12):1737-1742, 1948.

[25] J. Bobin, F. Sureau, J-L Starck. CMB reconstruction from the WMAP and Planck PR2 data. Astronomy and Astrophysics, 591(A50), 2016.

[26] G. Hinshaw et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results. The Astrophysical Journal Supplement Series, 180(2):225, 2009.

[27] Planck Collaboration: P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astronomy and Astrophysics, 594(A13):63, 2015.

[28] Volker Springel et al. Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature, 435(1):629-636, 2005.

[29] D. Clowe et al. A direct empirical proof of the existence of dark matter. The Astrophysical Journal Letters, 648(2):L109, 2006.

[30] J. R. Brownstein, J. W. Mo at. The Bullet Cluster 1E0657-558 evidence shows Modifed Gravity in the absence of Dark Matter. Monthly Notices of the Royal Astronomical Society, 382(1):29-47, 2007.

[31] www.nasa.gov.

[32] XENON100 Collaboration, E. Aprile et al. First Dark Matter Results from the XENON100 Experiment. Physical Review Letters, 105(13):131302, 2010.

[33] LUX Collaboration, D. S. Akerib et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Physical Review Letters, 112(9):091303, 2014.

[34] PICO Collaboration, C. Amole et al. Dark Matter Search Results from the PICO-60 CF3I Bubble Chamber. Physical Review D: Particles and Fields, 93(5):052014, 2016.

[35] PICO Collaboration, C. Amole et al. Improved Dark Matter Search Results from PICO-2L Run-2. Physical Review D: Particles and Fields, 93(6):061101, 2016.

[36] G. Angloher et al. Results on light dark matter particles with a low-threshold CRESST-II detector. The European Physical Journal C, 76(1):25, 2016.

[37] SuperCDMS Collaboration, R. Agnese et al. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment. Physical Review Letters, 116(7):071301, 2016.

[38] EDELWEISS collaboration, E. Armengaud et al. Constraints on lowmass WIMPs from the EDELWEISS-III dark matter search. Journal of Cosmology and Astroparticle Physics, 2016(05):019, 2016.

[39] A. Bharucha, S. Heinemeyer, F. von der Pahlen. Direct Chargino- Neutralino Production at the LHC: Interpreting the Exclusion Limits in the Complex MSSM. The European Physical Journal C, 73(11):2629, 2013.

[40] ATLAS Collaboration, G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. Journal of Instrumentation, 3(08):S08003, 2008.

[41] CMS Collaboration, S. Chatrchyan et al. The CMS experiment at the CERN LHC. Journal of Instrumentation, 3(08):S08004, 2008.

[42] L. Evans, P. Bryant. LHC Machine. Journal of Instrumentation, 3(08):S08001, 2008.

[43] CMS Collaboration, S. Chatrchyan et al. Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at s = 7 TeV. Journal of High Energy Physics, 2012(11):147, 2012.

[44] ATLAS Collaboration, G. Aad et al. Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in s = 7 TeV pp collisions with the ATLAS detector. Physics Letters B, 718(3):841-859, 2013.

[45] The HESS Collaboration, A. Abramowski et al. Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the MilkyWay Center with H.E.S.S. Physical Review Letters, 114(8):081301, 2015.

[46] MAGIC Collaboration, J. Aleksic et al. Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope. Journal of Cosmology and Astroparticle Physics, 2011(06):035, 2011.

[47] W.B. Artwood et. al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission. The Astrophysical Journal, 697(2):1071, 2009.

[48] W.B. Artwood et. al. Design and Initial Tests of the Tracker- Converter of the Gamma-ray Large Area Space Telescope. Astroparticle Physics, 28(4-5):422-434, 2007.

[49] L. Feng, R. Yang, H. He, T. Dong, Y. Fan, J. Chang. AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening. Physics Letters B, 728:250- 255, 2014.

[50] S. Adrian-Martnez et. al. Letter of Intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8):084001, 2016.

[51] IceCube-Gen2 Collaboration. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica. arXiv:1412.5106v2, 2014.

[52] K. Abe et. al. Letter of Intent: The Hyper-Kamiokande Experiment | Detector Design and Physics Potential |. arXiv:1109.3262v1, 2011.

[53] G. Wikstrom, J. Edsjo. Limits on the WIMP-nucleon scattering cross-section from neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2009(04):009, 2009.

[54] A. Gould. Cosmological Density of WIMPS from Solar and Terrestrial Annihilations. Astrophysics Journal, 388(1):338-344, 1992.

[55] G. Jungman et al. Supersymmetric dark matter. Physics Reports, 267(5):195{373, 1996.

[56] J. F. Navarro, C. S. Frenck, S. D. M. White. The Structure of Cold Dark Matter Halos. Astrophysical Journal, 462(1):563{575, 1996.

[57] J. An, H. Zhao. Fitting functions for dark matter density profiles. Monthly Notices of the Royal Astronomical Society, 428(1):2805{ 2811, 2013.

[58] Paul J. McMillan. The mass distribution and gravitational potential of the Milky Way. Monthly Notices of the Royal Astronomical Society, 465(1):76-94, 2016.

[59] A. Burkert; J. Silk. On the structure and nature of dark matter halos. Proceedings of the second international conference on \Dark matter in astro and particle physics", 1999.

[60] A. Charbonnier, C. Combet, D. Maurin. CLUMPY: A code for -ray signals from dark matter structures. Computer Physics Communications, 183(3):656-668, 2012.

[61] F. Nesti, P.Salucci. The Dark Matter halo of the Milky Way, AD 2013. Journal of Cosmology and Astroparticle Physics, 2013(07):016, 2013.

[62] ANTARES Collaboration, S. Adrian-Martinez et al. Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope. Journal of Cosmology and Astroparticle Physics, 2015(10):068, 2015.

[63] M.Cirelli et al. PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection. Journal of Cosmology and Astroparticle Physics, Erratum: JCAP 1210 (2012) E01., 2011(03):051, 2012.

[64] M.Cirelli et al. Erratum: PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2012(10):E01, 2012.

[65] M. Blennow, J. Edsjo, T. Ohlsson. Neutrinos from WIMP Annihilations obtained using a Full Three-Flavor Monte Carlo Approach. Journal of Cosmology and Astroparticle Physics, 2008(01):021, 2008.

[66] C. Giunti, C. W. Kim. Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, 2007.

[67] L. Wolfnstein. Neutrino oscillations in matter. Physical Review D: Particles and Fields, 17(9):2369-2374, 1978.

[68] M. Drees, R. M. Godbole, P. Roy. Theory and phenomenology of sparticles. World Scientific, 2004.

[69] Joakim Edsjo. Aspects of neutrino detection of neutralino dark matter. PhD thesis, Uppsala University, 1997.

[70] Manuel Drees, Mihoko M. Nojiri, D.P. Roy, Y. Yamada. Light Higgsino Dark Matter. Physical Review D: Particles and Fields, 56(1):276-290, 1997.

[71] Adriaan Jacob Heijboer. Track Reconstruction and Point Source Searches with ANTARES. PhD thesis, Universiteit van Amsterdam, 2004.

[72] ANTARES Collaboration, J.A. Aguilar et al. A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9):652{662, 2011.

[73] http://www.pi1.physik.uni-erlangen.de/antares/onlinedisplay/ online-display.php.

[74] G. Carminati, M. Bazzotti, A. Margiotta, M. Spurio. Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12):915-923, 2008.

[75] G. Carminati, M. Bazzotti, A. Margiotta, M. Spurio. An update of the generator of atmospheric muons from parametric formulas (MUPAGE). Computer Physics Communications, 181(4):835-836, 2010.

[76] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: A Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe Report, FZKA 6019, 1998.

[77] D. Heck, J. Knapp. Upgrade of the Monte Carlo code CORSIKA to simulate extensive air showers with energies > 1020 eV. Forschungszentrum Karlsruhe Report, FZKA 6097, 1998.

[78] P. Antonioli et al. Three-Dimensional Code for Muon Propagation through the Rock: MUSIC. Astroparticle Physics, 7(4):357-368, 1997.

[79] J. Brunner. ANTARES Simulation Tools. In Proceedings of the VLVnT Workshop 2003, Amsterdam, the Netherlands, 109, 2003.

[80] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung. New Generation of Parton Distributions with Uncertainties from Global QCD Analysis. Journal of High Energy Physics, 2002(07):012, 2002.

[81] A. Margiotta. Common simulation tools for large volume detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 725(53):98-101, 2013.

[82] S. Agostinelli et al. Geant4|a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250-303, 2003.

[83] ANTARES Collaboration, S. Adrian-Martinez et al. First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013(11):032, 2013.

[84] R. Barlow. Extended maximum likelihood. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(3):496- 506, 1990.

[85] F. Havelock. A Combined Analysis of Data from ANTARES and other Neutrino Telescopes in the Search for Dark Matter. Master's thesis, Imperial College London, Universidad de Valencia, 2016.

[86] G.C. Hill, K. Rawlins. Unbiased cut selection for optimal upper limits in neutrino detectors: the model rejection potential technique. Astroparticle Physics, 19(3):393-402, 2003.

[87] J.Neyman. A Selection of Early Statistical Papers on J. Neyman. Phil. Trans. Royal Soc. London Series A., 236:250, 1937.

[88] S.S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics, 9(1):60-62, 1938.

[89] W. H. Press and D. N. Spergel. Capture by the sun of a galactic population of weakly interacting, massive particles. The Astrophysical Journal, 296(1):679-684, 1985.

[90] G. Lambard on behalf of the ANTARES collaboration. Indirect searches for dark matter with the ANTARES neutrino telescope. In Proceedings, 21st International Europhysics Conference on High energy physics (EPS-HEP 2011): Grenoble, France, July 21-27, 2011, volume EPS-HEP2011, page 064, 2011.

[91] IceCube Collaboration, M.G. Aartsen et al. Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. Journal of Cosmology and Astroparticle Physics, 1604(04):022, 2016.

[92] Super-Kamiokande Collaboration, K. Choi et al. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14):141301, 2015.

[93] XENON100 Collaboration, E. Aprile et al. Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Physical Review Letters, 111(2):021301, 2013.

[94] IceCube Collaboration, M.G. Aartsen et al. Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Physical Review Letters, 110(13):131302, 2013.

[95] XENON100 Collaboration, E. Aprile et al. Dark Matter Search Results from 225 Live Days of XENON100 Data. Physical Review Letters, 109(12):181301, 2012.

[96] ANTARES Collaboration, S. Adrian-Martinez et al. The first combined search for neutrino point-sources in the southern hemisphere with the ANTARES and IceCube neutrino telescopes. The Astrophysical Journal, 823(1):65, 2016.

[97] ANTARES Collaboration, S. Adrian-Martinez et al. Search for Cosmic Neutrino Point Sources with Four Years of Data from the ANTARES Telescope. The Astrophysical Journal, 760(1):53, 2012.

[98] ANTARES Collaboration, S. Adrian-Martinez et al. Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2015(10):068, 2015.

[99] IceCube Collaboration, M.G. Aartsen et al. All- avour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore. The European Physical Journal C, 76(10):531, 2016.

[100] K. Griest, M Kamionkowski. Unitarity Limits on the Mass and Radius of Dark-Matter Particles. Physical Review Letters, 64(6):615- 618, 1990.

[101] S. Profumo. TeV -rays and the largest masses and annihilation cross sections of neutralino dark matter. Physical Review D: Particles and Fields, 72(1):103521, 2005.

[102] M. Chianese, G. Miele, S. Morisi. Dark Matter interpretation of low energy IceCube MESE excess. Journal of Cosmology and Astroparticle Physics, 2017(01):007, 2017.

[103] IceCube Collaboration, M.G. Aartsen et al. Search for Dark Matter Annihilation in the Galactic Center with IceCube-79. The European Physical Journal C, 75(10):492, 2015.

[104] FERMI-LAT Collaboration, M. Ackermann et al. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Physics Review Letters, 115(23):231301, 2015.

[105] H. Abdallah et al., HESS Collaboration. Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Physical Review Letters, 117(11):111301, 2016.

[106] R. Caputo, M. R. Buckley, P. Martin, E. Charles, A. M. Brooks, A. Drlica-Wagner, J. M. Gaskins, M. Wood. Search for Gamma-ray Emission from Dark Matter Annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope. Physical Review D: Particles and Fields, 93(6):062004, 2016.

Elements

Text

This is bold and this is strong. This is italic and this is emphasized. This is superscript text and this is subscript text. This is underlined and this is code: for (;;) { ... }. Finally, this is a link.


Heading Level 2

Heading Level 3

Heading Level 4

Heading Level 5
Heading Level 6

Blockquote

Fringilla nisl. Donec accumsan interdum nisi, quis tincidunt felis sagittis eget tempus euismod. Vestibulum ante ipsum primis in faucibus vestibulum. Blandit adipiscing eu felis iaculis volutpat ac adipiscing accumsan faucibus. Vestibulum ante ipsum primis in faucibus lorem ipsum dolor sit amet nullam adipiscing eu felis.

Preformatted

i = 0;

while (!deck.isInOrder()) {
    print 'Iteration ' + i;
    deck.shuffle();
    i++;
}

print 'It took ' + i + ' iterations to sort the deck.';

Lists

Unordered

  • Dolor pulvinar etiam.
  • Sagittis adipiscing.
  • Felis enim feugiat.

Alternate

  • Dolor pulvinar etiam.
  • Sagittis adipiscing.
  • Felis enim feugiat.

Ordered

  1. Dolor pulvinar etiam.
  2. Etiam vel felis viverra.
  3. Felis enim feugiat.
  4. Dolor pulvinar etiam.
  5. Etiam vel felis lorem.
  6. Felis enim et feugiat.

Icons

Actions

Table

Default

Name Description Price
Item One Ante turpis integer aliquet porttitor. 29.99
Item Two Vis ac commodo adipiscing arcu aliquet. 19.99
Item Three Morbi faucibus arcu accumsan lorem. 29.99
Item Four Vitae integer tempus condimentum. 19.99
Item Five Ante turpis integer aliquet porttitor. 29.99
100.00

Alternate

Name Description Price
Item One Ante turpis integer aliquet porttitor. 29.99
Item Two Vis ac commodo adipiscing arcu aliquet. 19.99
Item Three Morbi faucibus arcu accumsan lorem. 29.99
Item Four Vitae integer tempus condimentum. 19.99
Item Five Ante turpis integer aliquet porttitor. 29.99
100.00

Buttons

  • Disabled
  • Disabled

Form